41 research outputs found

    A kite balloon system for the monitoring of gatherings in open areas

    Get PDF
    To fight the diffusion of COVID-19, INAF-OAPA proposes an innovative prototype of a static aerial platform for observations from a certain quote. The technology, developed in the field of surveillance for public safety, environmental monitoring, such as illegal landfills, traffic, smog, fires and for precision agriculture, can be fruitfully migrated to other fields such as open areas monitoring, to identify large gatherings of people outdoors

    X-IFU Filter Wheel Optical Blocking Filters Technology Demonstration Plan

    Get PDF
    The main purpose of the present plan is to provide a clear path to demonstrate the TRL5 by the Mission Adoption for the three OBFs on the X-IFU Filter Wheel (FW). An effort has been performed in trying to identify what shall be considered technology, for which the maturity has to be demonstrated, and what is design that can still contribute to improve the performances of the FW filters along phases B and C of development. The X-IFU FW filters conceptual design is similar to that defined (during phase A) and described in the "X-IFU Filter Wheel Mechanism and Electronics Design Description", and the "X-IFU Thermal Filters (THFs) Description" documents presented at the I-PRR. The preliminary design of the X-IFU FW Filters rely on heritage from previous missions and characterization tests performed in phase-A on breadboards manufactured by LUXEL Corporation (Friday Harbor, WA, USA). The adoption of a design similar to that of the X-IFU THFs for frame shape and materials, and to that of the WFI FW filters for film and coating thicknesses, as well as for overall dimensions, allow migrating part of the achievements reached by the X-IFU THFs and WFI FW filters to the X-IFU FW filters. For this reason, the TDP for the X-IFU FW filters will be mainly focused on the vibro-acoustic performances. With this respect, minor effort will be dedicated to the thick and very robust meshless filter (25 μm PI + 100 nm Al) designed to observe very bright x-ray sources. The goal of this activity is to demonstrate TRL5 before MAR for the baseline technology of filters manufactured by LUXEL (PI/Al on BeCu mesh). However, in parallel to verify also the maturity of other filter technologies and to mitigate the risks of having only one manufacturer, we will procure and test filter samples and bare meshes of other European manufacturers (OXFORD instruments, XRNanotech). The identified TECHNOLOGY development elements that we consider critical in the X-IFU FW OBFs are described in this document. In section 7 we list the breadboards (BBs) we have identified to perform the necessary characterization tests aimed at demonstrating their maturity

    The large area detector onboard the eXTP mission

    Get PDF
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    X-IFU Thermal Filters Technology Demonstration Plan

    No full text
    The main purpose of the present plan is to provide a clear path to demonstrate the Thermal Filters (THF) TRL5 by the Mission Adoption. An effort has been performed in trying to identify what shall be considered technology, for which the maturity has to be demonstrated, and what is design that can still contribute to improve the performances of the THF along phases B and C of development. The X-IFU thermal filters conceptual design, defined during phase A and described in the THF description document presented at the I-PRR, relies on heritage from previous missions and characterization tests performed on breadboards manufactured by LUXEL Corporation (Friday Harbor, WA, USA). The TRL5 will thus be demonstrated before MAR for the technology of filters manufactured by LUXEL. However, in parallel and as part of the risk mitigation actions, we will procure and test filter samples of other european manufacturers, to verify also the maturity of other filter technologies. The identified TECHNOLOGY development elements that we consider critical are described in the document. In section 7 we list the breadboards (BBs) we have identified to perform the necessary characterization tests aimed at demonstrating their maturity

    Determination of geometry arrangement of copper ions in HKUST-1 by XAFS during a prolonged exposure to air

    No full text
    We present an experimental investigation focused on the local structural changes taking place around Cu2+ions in metalâ organic framework (MOF) HKUST-1 for different times of exposure to air by XAFS (X-ray absorption fine structure). The analysis involves both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) regions around the Cu K-edge. Starting from the paddle-wheel structures proposed in literature, a more detailed description of the geometrical environment of Cu2+ions has been found. In particular, the paddle-wheel structure of a fresh sample, which means a pristine HKUST-1 material with a single water molecule weakly adsorbed on each Cu2+ion, has been disclosed for the first time. Furthermore, after 20 days of exposure to air, relevant structural changes with respect to the pristine sample have been evidenced. An activation process has demonstrated that these local changes are totally reversible, in agreement with a recent model of the decomposition process of HKUST-1 proposed in literature

    X-IFU Thermal Filter THF300 thermalization study

    No full text
    This document reports a parametric thermal study performed on different technical solutions to heat the X-IFU thermal filter TH300 to minimize molecular contamination during the lifetime of the mission. The thermal model retrieves the radial temperature profile on the THF300 filter of the X-IFU instrument and establishes the necessary conditions to keep all the filter area above the temperature of 320 K [AD1]. The outcomes of this study have guided the choice of the baseline heating strategy compliant with the stringent thermal specifications of the X-IFU instrument, the selection of the filter mesh and plating materials, and the required operating temperature of the 300 K carrier

    Technical Note 7 - Test plan for the Athena filters

    No full text
    This document contains the test plan for the characterization of a set of CNT filters manufactured according to the design of two of the thermal filters, namely THF2 and THF300, in the current Athena X-IFU design, that is undergoing the instrument system requirement review (I-SRR). In particular, a set of fully representative filters has been manufactured by Ametek/Canatu using the high density CNT pellicle, bare and coated with aluminum, attached to Au plated BeCu meshes, and mounted onto aluminum frames. This document provides a brief description of test procedure, test equipment, and schedule for each proposed characterization methodology to be performed within task 5 of the contract. For more technical details on the equipment and accuracy of the test methodology we sometimes address the previous technical notes TN2 and TN6
    corecore